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Abstract 
Trade-offs between reproduction, somatic expenses, growth, food storage, migration, and many 

more behaviors are fundamental to understanding organisms of all sizes and taxa. 

Understanding the evolution of the “choices” made between these trade-offs will allow us to gain 

further insights into the ecosystems of our world, to build predictive models, and even prescribe 

conservation policies 

In 2018, Yeakel, Kempes, and Redner introduced a population dynamic model using a 

state-structured approach taking the form of first-order differential equations (Yeakel et al., 

2018). The approach yielded promising results in predicting Cope’s rule, Damuth’s law, and an 

evolutionary mechanism for foraging behavior. Initial integration of competition showed the 

advantages and disadvantages of higher or lower body fat. Yet, a variety of behaviors, from 

food storage to predation, to the coexistence of herbivores competing for the same resource, to 

island ecology, or more complex food webs have not been considered to date. 

Here we show an extension of the original nutritional state-structured model by increasing the 

trophic level to include a secondary predator. 

We find that there are analytical solutions to the predicted steady-state of the new system of 

equations, however, the system does not reach this steady-state experimentally. Predator size 

and presence has almost no effect on the predicted steady-state for other trophic levels. The 

observed relationship between predator density and prey density is not predicted to be a power 

law with exponent 0.74 as predicted previously but has an exponent of 0.99 instead. This 

suggests the model does not capture the workings of a three trophic level interaction yet and 

more adjustments are needed. 

In addition, we outline how accounting for differences in resource availability measured as net 

primary productivity and standing biomass can account for variation in data examined Yeakel et 

al. (2018). 

  



Introduction 
Ecological modeling traditionally considered one level of exploration. Potentially the most 

famous of all, Lotka-Volterra, is an example of a differential equations model aiming to capture 

the broader-scale dynamics of population density over time (Lotka, 1926). The model consists 

of a set of differential equations modeling the change in a predator and prey population 

(Equation 1). 

x xydt
dx = α − β  

xy ydt
dy = δ − γ  

(1) 

Equation 1: The original Lotka-Volterra model of population dynamics, where  represents thex  

prey population,  is the predator population, and , and  are parameters depending ony , ,α β γ δ  

the interaction of the two species. 

 

Determining the parameter values for an ODE like Lotka-Volterra is where a second 

level of ecological modeling comes in. On the species level, more recent work has shown that 

many important factors such as metabolic rate, heart rate and more have a power-law 

relationship with the body mass of an individual of a specific species (Brown et al., 2004). Figure 

1 shows an example of one of these relationships. 

 

Figure 1: The temperature-corrected maximal whole-organism biomass production is related to 

the mass in grams of the organism through a power-law with exponent 0.76 (Brown et al., 2004) 



 

Yeakel et al. (2018) took advantage of these relationships to use mass as the primary input to a 

novel type of ecological model that would allow us to predict population density based on mass 

and ecological conditions. What makes this approach even more compelling is the fact that 

density itself follows a power-law relationship with mass, as stated in Damuth’s law (Damuth, 

1987), who collected data from several hundred independent studies across the world as seen 

in figure 2. 

 

Figure 2: The density fo the smallest mammalian primary consumers at just 10s of grams is 

significantly higher than those of large consumers with millions of grams. The relationship is a 

power law (Damuth, 1987). 

 

As seen in figure 3, the model proposed by Yeakel et al. (2018) offered an excellent fit to 

Damuth’s law. While this is a promising result, the model can be expanded to include several 

extensions, perhaps most importantly the addition of further trophic levels to allow for 



predator-prey relationships not included in the original model but known to have a significant 

impact in natural ecosystems. In addition, I will argue for the inclusion of two inputs in addition to 

mass to explain some of the variations in Damuth’s data and suggest how to test the resulting 

hypothesis. 

 
Figure 3: A plot showing the original model in Yeakel et al. closely matches the power-law 
relationship observed by Damuth (Yeakel et al., 2018).  

Methods 
The original model from Yeakel et al. (2018) can be seen in equation 2 and some of the 

parameters explained in Table 1. In summary, there are two nutritional states of the mammalian 

herbivore, full and hungry, of which only the full one is able to reproduce and only the hungry 

one will die (of starvation). The resource density determines how many of the consumers move 

from the hungry to the full state and vice versa. 

  



 

 
 

(2) 
 
 
 
 
 
 

 
Equation 2: The original ODE from Yeakel et al (2018). An overview of the parameters is given 
in table 1. 
 
 

Variable Meaning Variable Meaning 

F d  Full consumer density σ  Starvation rate 

Hd  Hungry consumer density  C  Carrying capacity 

Rd  Resource density μ  Starvation death rate 

λmax  Reproduction rate α  Intrinsic resource growth rate 

ρmax  Recovery rate Y x  Yield coefficient (grams of 
consumer produced per gram of 
resource) 

k  Half-saturation constant P x  Maintenance rate of resource 
consumption 

Table 1: Overview of the variables and parameters used in the original model, as well as their 
units 
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Equation 3: The extension of the model presented in Equation 2. Many of the parameters in the 
new carnivore trophic level(3.1) are analogous to the ones in the original model. The primary 
consumer level is extended to include death through predation. 
 

 
Figure 4: A graphic explaining the processes present in the system. 
 

Equation 3 shows the extended ODE including a third trophic level and is illustrated 

graphically in figure 4. Consumption of herbivores is presumed to be proportional to the 

population of full and hungry herbivores respectively. and  represent the originalF * H*  

steady-state of the system and is a new parameter allowing one to rescale the carryingθ  

capacity. 

Next, the system in equation 3 is non-dimensionalized and simplified using the rescaling 

, , , , and .FF = f d HH = f d RR = q d F c = f  F cd HHc = f cd tt = s d  
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Equation 4: The formally non-dimensionalized version of equation (3) 

 

If we then choose , , , drop the “max” subscripts for simplicity, ands = 1 /Cq = 1 /Y kf = 1 H  

let  , , , , , , and/kξ = C kP /Cδ = Y H H k( )/Cβ = Y H
λ
Y F

+ P F c1 = kc
ρc c2 = Y kH

θ(F +H )* * c3 = Y kH
Y kHc c

 

. We get the final simplified system seen in equation 5.c4 = λc
Y Fc

+ P FC
 

 

 

 
(5) 

 
 

Equation 5: The final, simplified system of equations. 

  



Results 
Analytically, one can solve for the expected steady-state for the carnivores, herbivores and the 

resource. Figure 5 shows the expected population densities of full carnivores and full herbivores 

depending on mass. The predator biomass has little impact on the expected values of either 

population. 

Figure 5: Two plot showing the carnivore density (left) and herbivore density (right) in relative 
density units depending on both predator and prey mass. At low prey mass, no steady-state is 
found, and predator mass does not have a large impact on the steady-state of the system. 
 

Another interesting question to answer with the predicted steady-state data is what the 

relationship between expected predator density and prey density is. Hatton et al. (2015) 

collected a dataset on this relationship which shows a power-law relationship, as seen in figure 

6. Figure 7 shows the data from figure 5 relating the predator and prey density in the same 

fashion as figure 6. The exponent is not close to 0.73 at 0.99, suggesting the model at its 

current state does not capture the effect observed in Hatton et al. (2015) 



 
Figure 6: Predator density and prey density vary following a power law with an exponent of 0.73, 
meaning ecosystems become more bottom-heavy (Hatton et al., 2015) 
 

 
Figure 7: Relating the total biomass of predator and prey predicted for the model at different 
masses for each, shows a relationship with an exponent close to 1 (0.99). The model does not 
capture the 0.73 observed exponent by Hatton et al.,(2015) 
 

Along with the expected result obtained through analytically solving the ODE, we started 

the system close to this expected steady-state to see its actual behavior. Unlike the original 



NSM (Yeakel et al., 2018), the system does not stabilize at the steady-state, likely due in part to 

numerical errors. An example of this behavior can be seen in figure 8. 

 
Figure 8: Even when starting at or close to the predicted steady-state, the system does not 
reach it and is unstable, showing oscillations in all populations other than the resource. 

NPP and Carrying Capacity 
Returning to the findings shown in figure 3, the original NSM can likely be improved by taking 

into account two factors independent of organism mass. The first is carrying capacity which can 

be approximated as standing biomass in an ecosystem and varies widely from dessert 

ecosystems to tropical rainforests. The second is net primary productivity, which directly 

influences  in the model by measuring the growth rate of an ecosystem. This value can varyα  

seasonally as well as geographically across ecosystems. A change of about three orders of 

magnitude is sufficient to explain the majority of variability in the Damuth dataset, which is 

consistent with the observed range on earth  



 
Figure 9: The original model in the center in orange and two variations thereof showing the 
upper and lower bounds of net primary productivity and carrying capacity. Three orders of 
magnitude are sufficient to explain a large amount of variation in the Damuth dataset. 

Discussion 
As Yaekel et al. (2018) suggest, there is great potential in using mass as a central component in 

determining the parameters used for a population density model of ecology. However, to include 

additional trophic levels, the parameters outlined in the original paper will likely have to be 

adjusted further to be able to reach the steady-state. Most likely candidates are yield 

coefficients as well as growth, which requires a more in-depth exploration of the literature on 

carnivores rather than primary consumers. Additional complexity may also help stabilize the 

system enough to do so. To capture the relationship between predator and prey density 

explored in Hatton et al., more adjustments are also likely needed. 
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